FCC SDoC TEST REPORT

Shenzhen Mingfeng Creative Technology Co., Ltd.

Power Bank

Test Model: BL-D98LS

Additional Model No.: MF-P03, TTPB03

Prepared for : Shenzhen Mingfeng Creative Technology Co., Ltd. Address : 407, Block A and B, Building 1, CITIC Industrial City,

Xintian Community, Fuhai Street, Baoan District,

Shenzhen

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.
Address : Room 101, 201, Building A and Room 301, Building C,

Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao' an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : October 16, 2021

Number of tested samples : 1

Serial number : Prototype

Date of Test : October 16, 2021 ~ October 25, 2021

Date of Report : October 25, 2021

FCC SDoC TEST REPORT FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014

Report Reference No.: LCS210929048AE

Date Of Issue October 25, 2021

Testing Laboratory Name ...: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address: Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao' an

District, Shenzhen, Guangdong, China

Testing Location/ Procedure..: Full application of Harmonised standards

Partial application of Harmonised standards

Applicant's Name.....: Shenzhen Mingfeng Creative Technology Co., Ltd.

Address: : 407, Block A and B, Building 1, CITIC Industrial City,

Xintian Community, Fuhai Street, Baoan District,

Shenzhen

Test Specification

Standard.....: FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI

C63.4 -2014

Test Report Form No...... LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Power Bank

Test Model: BL-D98LS

Trade Mark PISEN, Litossa, XMOBILE, AVA+, HYDRUS, Totrro

Ratings Please Refer To Page 7

Result: Positive

Compiled by: Approved by: Supervised by:

Cindy Nie

Cindy Nie/ File administrators Baron Wen/ Technique principal

Baron Wen

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 18

FCC -- TEST REPORT

Test Report No. : LCS210929048AE October 25, 2021
Date of issue

Test Model: BL-D98LS EUT.....: Power Bank Applicant.....: : Shenzhen Mingfeng Creative Technology Co., Ltd. Address......: : 407, Block A and B, Building 1, CITIC Industrial City, Xintian Community, Fuhai Street, Baoan District, Telephone.....:: : / Fax.....:: : / Manufacturer.....: GUANGDONG PISEN ELECTRONICS CO., LTD. Address.....: NO.9.QINFU 1ST. STREET JINTANG INDUSTRY ZONE LIUYUE. HENGGANG TOWN, LONGGANG DISTRICT, SHENZHEN Telephone.....:: : / Fax....:: : / Factory.....: : GUANGDONG PISEN ELECTRONICS CO., LTD. Address..... : NO.9.QINFU 1ST, STREET JINTANG INDUSTRY ZONE LIUYUE, HENGGANG TOWN, LONGGANG DISTRICT, SHENZHEN Telephone.....:: : / Fax.....: : /

Test Result according to the standards on page 6: Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	October 25, 2021	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	6
1.1. Description of Standards and Results	6
2. GENERAL INFORMATION	7
2.1. Description of Device (EUT)	7
2.2. Support Equipment List	7
2.3. Description of Test Facility	7
2.4. Statement of the Measurement Uncertainty	7
2.5. Measurement Uncertainty	8
3. TEST RESULTS	9
3.1. Rdiated emission Measurement	9
4. PHOTOGRAPH	14
E EVTERNAL AND INTERNAL DUOTOS OF THE FUT	1.5

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION				
Description of Test Item	Standard	Limits	Results	
Conducted disturbance at mains terminals	FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014	Class B	N/A	
Radiated disturbance	FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014	Class B	PASS	
N/A is an abbreviation for Not Applicable.				

Test mode:				
Mode 1	Discharging	Record		
Mode 2	Charging	Pre-scan		
***Note: All test modes were tested, but	we only recorded the worst case i	n this report.		

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT : Power Bank

Trade Mark : PISEN, Litossa, XMOBILE, AVA+, HYDRUS, Totrro

Test Model : BL-D98LS

Additional Model No. : MF-P03, TTPB03

PCB board, structure and internal of these model(s)

Model Declaration : are the same, So no additional models were tested.

Power Supply : Micro USB/Type-C Input: 5V=3A, 9V=2A

Output: USB-A: 5V=3A, 5V=4A, 4.5V=5A, 5V=4.5A

9V-2A, 12V-1.5A

TypeC: 5V=3A, 9V=2A, 12V=1.5A

USB-A + Type-C Output Simultaneously: 22.5W Max

Capacity: 20000mAh 74Wh

EUT Clock : ≤ 108MHz

2.2. Support Equipment List

Name	manufacturers	M/N	S/N

2.3. Description of Test Facility

Site Description

EMC Lab. : NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

5

2.4. Statement of the Measurement Uncertainty

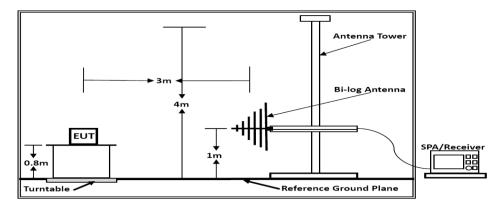
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.5. Measurement Uncertainty

Test	Parameters	Expanded Uncertainty (Ulab)	Expanded Uncertainty (Ucispr)
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 3.8 dB ± 3.4 dB
Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.3 dB
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	± 5.2 dB

- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3. TEST RESULTS


3.1. Rdiated emission Measurement

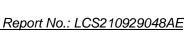
3.1.1. Test Equipment

The following test equipments are used during the radiated emission measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	E3	E3-EMC	/	N/A	N/A
2	By-log Antenna	SCHWARZBECK	VULB9163			2024-07-24
3	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-192 5	2021-07-01	2024-06-30
4	EMI Test Receiver	R&S	ESR3	102311	2021-06-21	2022-06-20
5	Broadband Preamplifier	1	BP-01M18G	P190501	2020-06-22	2021-06-21

3.1.2. Block Diagram of Test Setup

Below 1GHz


Antenna Tower

Horn Antenna

Turntable

Reference Ground Plane

Above 1GHz

3.1.3. Radiated Emission Limit (Class B)

Limits for Radiated Disturbance Below 1GHz

FREQUENCY	DISTANCE FIELD STRENGTHS L		NGTHS LIMIT
MHz	Meters	μV/m	dB(μV)/m
30 ~ 88	3	100	40
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46
960 ~ 1000	3	500	54

Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

	Limits for Radiated Emission Above 1GHz					
	Frequency Distance Peak Limit Average Limit					
	(MHz)	(dBµV/m)				
Above 1000 3 74 54				54		
	***Note: The lower limit applies at the transition frequency.					

3.1.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.1.5. Operating Condition of EUT

- 3.2.5.1. Setup the EUT as shown in Section 3.1.2.
- 3.2.5.2.Let the EUT work in test Mode 1 and measure it.

3.1.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.

Report No.: LCS210929048AE

3.1.7. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

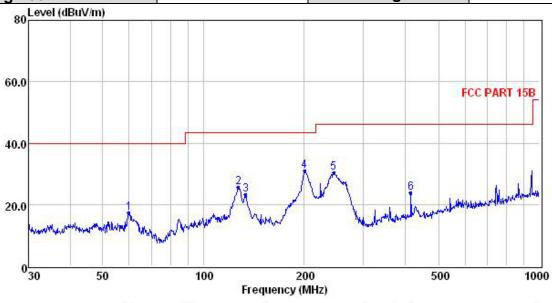
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for
RB / VB (Emission in restricted band)	Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for
RB / VB (Emission in non-restricted band)	Average

The frequency range from 30MHz to 1000MHz and above 1000MHz is checked.

3.1.8. Radiated Emission Noise Measurement Result

PASS.The scanning waveforms please refer to the next page.

1


2

3

5

416.18

Test Model	BL-D98LS	Test Mode	Mode 1
Environmental Conditions	22.3℃, 53.6% RH	Detector Function	Quasi-peak
Pol	Vertical	Distance	3m
Test Engineer	Hubert	Test Voltage	DC

Reading CabLos Antfac Measured Limit Over dBuV dB dB/m dBuV/m dBuV/m MHz dB 59.86 4.11 0.49 12.70 17.30 -22.70 40.00 QP 127.22 -17.80 0.67 15.67 9.36 25.70 43.50 QP 0.74 133.62 13.78 8.66 23.18 43.50 -20.32 QP 200.69 19.61 0.84 10.59 31.04 43.50 -12.46QP 245.09 17.46 0.90 12.08 30.44 46.00 -15.56QP

23.91

46.00

-22.09

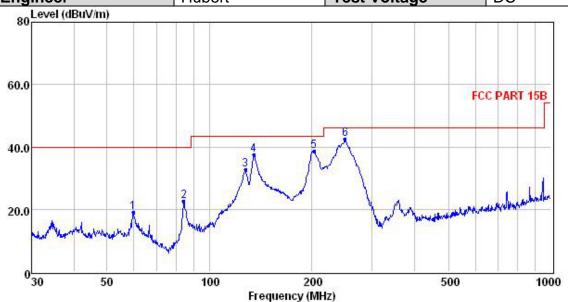
QP

Note: 1. All readings are Quasi-peak values.

7.35

2. Measured= Reading + Antenna Factor + Cable Loss

1.17


3. The emission that are 20db below the official limit are not reported

15.39

Test Model	BL-D98LS	Test Mode	Mode 1
Environmental Conditions	22.3℃, 53.6% RH	Detector Function	Quasi-peak
Pol	Horizontal	Distance	3m
Test Engineer	Hubert	Test Voltage	DC

Freq Reading CabLos Antfac Measured Limit Over Remark

	MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	ı dB		
1	59.65	5.93	0.49	12.71	19.13	40.00	-20.87	QP	=33
2	84.11	12.01	0.54	9.99	22.54	40.00	-17.46	QP	
3	127.66	22.68	0.67	9.29	32.64	43.50	-10.86	QP	
4	135.03	28.17	0.74	8.56	37.47	43.50	-6.03	QP	
5	202.81	27.33	0.82	10.66	38.81	43.50	-4.69	QP	
6	250.30	29.33	1.02	12.07	42.42	46.00	-3.58	QP	

Note: 1. All readings are Quasi-peak values.

- 2. Measured= Reading + Antenna Factor + Cable Loss
- 3. The emission that are 20db below the official limit are not reported

Note: Pre-Scan all mode, Thus record worse case mode result in this report.

4. PHOTOGRAPH

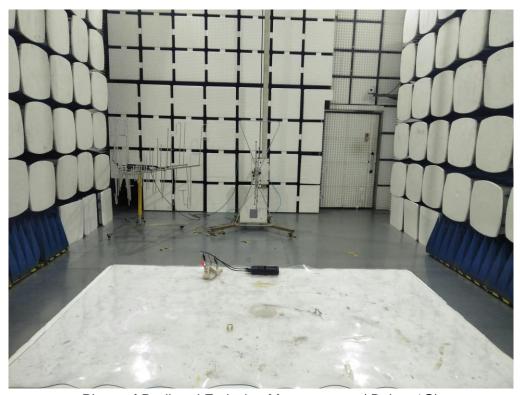


Photo of Radiated Emission Measurement (Below 1G)

5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

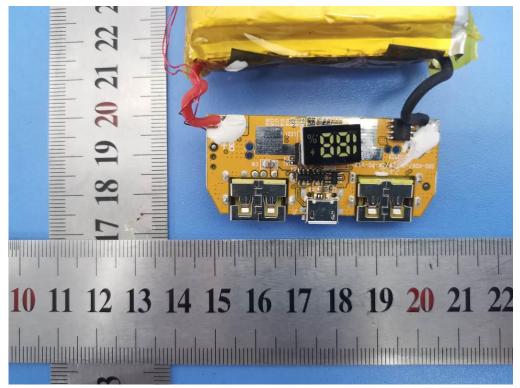


Fig. 7

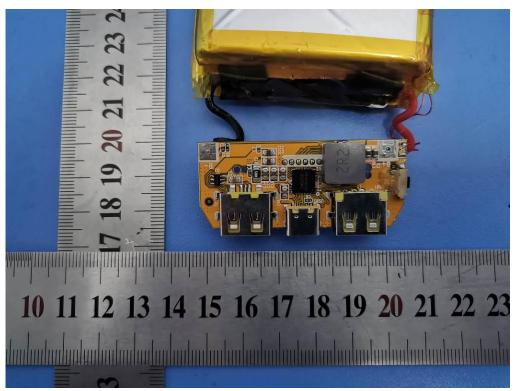


Fig. 8

-----THE END OF TEST REPORT-----

